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The Pope-Osborne Angular Momentum Synthesis (POAMS) postulates that all motion is naturally orbital 

and that orbital angular momentum is holistically conserved.  This paper demonstrates how the standard time 

dilation formula of Special Relativity, here obtained in a more economical way, can be incorporated into 

POAMS in order to predict orbital time dilation effects.  These effects are the same as those predicted by General 

Relativity, but are obtained without reference to the Einstein field equations.  It is also shown how the postulates 

of POAMS, together with these predicted orbital time dilation effects, can be used to derive what is effectively 

Schwarzschild space-time and hence the perihelion shift effect observed in the motion of planets.   
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1.  Introduction  

Following the publication of our first joint paper ‘A New 

Approach to Special Relativity’ [1], the Citations Index de-

scribed it simply as ‘a modelling approach to Relativity’.  This 

omitted to mention that rather than being viewed as simply a 

teaching aid, our geometric ‘modelling approach’ did not re-

quire – indeed, had made logically redundant – any reference to 

Einstein’s Second Axiom regarding his ‘constant speed of light 

in vacuo’.   

The initial aim of this ‘New Approach’ was to demonstrate 

that there are two different dimensional aspects to the phe-

nomenon of physical motion.  These are distinguished by the 

fact that, observationally, there are two distinct measures of the 

‘speed’ of relative motion.  One is the observational distance 

moved by the object divided by the time registered by the ob-

server of the motion (the observational time) and the other is 

that same distance divided by the time the observer sees regis-

tered by the moving body itself, usually called the proper time.  

Traditionally, the concept of ‘speed’ makes no such distinction 

between the times by which the distance is divided.  This means 

that the motion may be represented in the usual, traditional 

way, by a simple two-dimensional flat graph in which the curve 

may be plotted against the distance and time axes in terms of an 

unrestricted choice of units.  In the ‘New Approach’, this two-

dimensional representation is replaced by a geometrical – or, 

rather, a geometro-temporal – representation in which units of 

distance and units of time are relationally fixed in the constant 

ratio c of distance-units to time-units.  In this case, c is no longer 

the conventional ‘speed of light’ but simply a scale-constant of 

observationally projected dimensions.  The number of dimen-

sions required for a true graphical representation of motion are 

therefore no longer the simple two, namely, distance and time, 

but three.  These are, i) the observed distance (distance-time) of 

the motion, measured in seconds, ii) the proper time, i.e. the 

time of the motion as observed to be registered by the body it-

self, and, iii) the observational time, i.e. the time of the motion as 

registered by the observer’s clock.  Projected orthogonally, in the 

usual manner of geometrical dimensions, the surface on which 

the motion is represented is no longer that of a flat graph but 

that of a conic surface – in fact, that of a rectangular cone.  This 

can be demonstrated as follows.   

Consider a clock X moving with uniform velocity, i.e. with 

uniform speed v metres per second along a rectilinear path, rela-

tive to an observer O.  After passage of time  t  seconds, re-

corded by O, X moves a distance  s = vt  meters.  Using the con-

version factor c, X moves a distance-time s/c measured in sec-

onds.  Let the same time interval as recorded by X’s clock be τ  

seconds as observed by O.  It then follows simply by applying 

Pythagoras’s theorem in the associated two-dimensional time 
diagram with coordinates   s / c  and τ  that 

 
  t

2 = τ2 + (s / c)
2  

which is the equation of a rectangular cone in three-dimensions.  
Since  s = vt  it follows that 

 
  τ = 1 − (v / c)

2
 t  (1.1) 

Of course, this is the same time dilation formula as is derived in 

Special Relativity, and it implies that moving clocks run rela-
tively slower. [2]  The proper time τ  as recorded by the moving 

clock (relative to the clock’s own rest frame) is clearly inde-

pendent of any observer and serves as a universal parameter in 

Special Relativity.   

Note that this deduction of the time-dilation formula differs 

uniquely from the usual sort of deduction in that it involves no 

theories about light as an electromagnetic field-propagation in 

vacuo, or any other theoretical premises.  The deduction, like all 

the others in this paper, is one of pure syllogistic. [3]  

Professor Sir Herman Bondi has concurred with us concern-

ing the redundancy of c as ‘the speed of light’, at least insofar as 

it provides a teaching aid. [4]  As Bondi writes: 

“Any attempt to measure the velocity of light is … not an 

attempt at measuring the velocity of light but an attempt 
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at ascertaining the length of the standard metre in Paris 

in terms of time-units.” [5] 

Exploring the logical and philosophical implications of this 

lateral thinking alternative in the interpretation of the constant c 

has produced a new approach to natural philosophy termed 

‘Normal Realism’. [6]  This takes its departure from classical 

physics along the lines of the radical relativism, or phenomenal-

ism – sometimes called English Empiricism – of the philoso-

phers Locke, Berkeley and Hume. [7]  Developed by Kant, it 

was articulated as a basis for modern relativistic physics by Ein-

stein’s mentor, Mach. [8]  For Mach, all our knowledge of the 

world (especially in science) is based on sense-impressions, 

which he called ‘sense-data’.  In Normal Realism, this includes 

not only instrument data but also the informational data trans-

acted between observers in what is generally known as lan-

guage.  Normal Realism is therefore the present-day successor 

of this phenomenalist line.  Dr. Michael Duffy, organizer of the 

PIRT (Physical Interpretations of Relativity) conferences at Im-

perial College, London [9], refers to this phenomenalist ap-

proach as ‘the third alternative’.  The others he sees as “either 

geometrical (or continuum) formulations or some form of 

physical (mechanistic) analogue”.   

Now in any phenomenalist account of physics, since phe-

nomena are the fundamental starting-point of any scientific 

enquiry, plainly phenomenalism cannot be reconciled with 

Einstein’s Second Postulate, according to which phenomena are 

mediated by light travelling at a constant speed in the void 

between objects and our scientific observations of them.  This is 

doubtless what caused the notorious rift between the ‘Relativity’ 

of Einstein and its parent, the relationism of Mach. [10]   
Of particular relevance to this present paper is the applica-

tion of the Normal Realist programme of phenomenalism to the 

mechanical laws of Newton.  Newton’s first law states that all 

bodies left to themselves, with no external forces acting upon 

them either remain stationary or else travel is straight lines.  

Normal Realism regards this ‘law’ as unempirical, since no 

force-free bodies are ever observed to stand in space or travel in 

that so-called ‘inertial’ way.  Doubly unempirical, as Normal 

Realism sees it, is Newton’s explanation as to why no bodies 

anywhere obey that ‘first law’, which is that all bodies are uni-

versally attracted to one another by an invisible in vacuo force, 

so that they never either stand still in space or travel in straight 

lines in the way Newton envisaged. 

What is actually observed, then, according to Normal Realism 

are not bodies traveling in space with an ‘inertial’ rectilinear 

momentum but bodies traveling in orbits of automatically 

paired and balanced angular momentum.  This idea may be 

summarised in the following principle. [11] 

“The Principle of Angular Inertia: All bodies move angu-

lar-inertially.  Angular inertia is the resistance of a body 

to any change in its angular momentum relations and is 

the natural tendency of a body to follows the path of 

least resistance (i.e. least action) in accordance with the 

conservation of angular momentum.” 

We have named this alternative approach to the phenome-

non of motion ‘POAMS’ (for Pope-Osborne Angular Momen-

tum Synthesis).  In POAMS this is demonstrated to be sufficient 

to explain the orbital motions of masses without any reference 

whatsoever to Newton’s invisible ‘gravitational force’.  In simi-

lar fashion, POAMS also dispenses with other forces, conceived 

by analogy with Newton’s ‘gravitational force’, such as for ex-

ample, electrostatic ‘force’. [12] 

The full philosophical background to POAMS has been pub-

lished sufficiently widely elsewhere for that subject not to be 

laboured here . [13,14]  Suffice it to say, for now, that this paper 

is a natural logical progression of discoveries published so far.  

As such it represents a ‘new move’ in POAMS that consists of 

‘marrying’ the time dilation formula (1.1) into its angular mo-

mentum synthesis.  The paper successfully coalesces the two 

aspects and consummates this marriage by predicting known 

orbital time dilation effects in agreement with the predictions of 

Einstein’s General Theory of Relativity in the manner already 

described.  Moreover, in predicting the known effects in such a 

simple way, POAMS also predicts the observed perihelion shift 

effect of Mercury and other planets as in General Relativity, 

without the need for the Einstein field equations or direct use of 

tensor calculus.  In fact, POAMS is able to construct the 

Schwarzschild space-time metric without reference to the field 

equations.   

2.  Time Dilation In Non-Uniform Motion 

As demonstrated in the introduction, the usual time dilation 

formula (1.1) of Special Relativity can be deduced using the 

Normal Realist approach in a more economical way.  In sum-

mary, if a clock X moves along a rectilinear path at constant 
speed v relative to an observer O, then in passage of time  t  as 

recorded by O, X’s clock records a passage of proper time τ  

given by   

 
  τ = 1 − (v / c)

2
 t  (2.1) 

According to POAMS, all motion is naturally orbital, such 

orbits being determined by conservation of angular momentum.  

In this scenario, in contrast to Newtonian theory, there is no 

such thing as ideally rectilinear motion.  Hence, formula (2.1) is 

not generally appropriate in POAMS, except for small enough 

segments of orbits of extremely large mean radius, which are 

effectively straight-line segments.  However, exactly as in Spe-

cial Relativity, formula (2.1) can be generalized to the case of a 

clock in non-uniform motion relative to an observer.  Consider a 
clock X moving with non-constant velocity 

   v(t)  relative to an 

observer O and let 
   v(t) =|v(t)| denote the speed of the clock 

relative to O.  It follows by (2.1) and the definition of the Rie-

mann integral that in this case, the relatively moving clock X 

records proper time τ  given by 

 
  
τ = 1 − (v / c)2∫  dt  (2.2) 

Of course, a relatively moving clock may travel along any path 

but still have constant speed, as in the case of a clock moving in 

a circular orbit with constant speed.  If the speed v of the rela-

tively moving clock is constant, then (2.2) gives 

 
  
τ = 1 − (v / c)

2∫  dt = 1 − (v / c)
2

 t  
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as in (2.1).  In other words, formula (2.1) holds not only for rec-

tilinear motion, but also for any non-uniform motion for which 

the speed is constant.   

Let positions in space be described by Cartesian coordinates 
(
  x, y, z ).  Then, as in classical kinematics, the velocity of a mov-

ing object is given by 

 
   v(t) = (dx / dt, dy / dt, dz / dt)  

so that its speed satisfies  

 
  
v2

(t) = (dx / dt)2 + (dy / dt)2 + (dz / dt)2





 

It then follows by (2.2) that 
  (dτ / dt)2 = 1 − v2

(t) / c2  implies 

 

  

c2 dτ
dt











2

= c2 − v2 (t) = c2 − dx

dt











2

+ dy

dt











2

+ dz

dt











2

 

so that 

 
  −c2dτ2 = −c2dt2 + dx2 + dy2 + dz2  (2.3) 

Equation (2.3) is the metric for Minkowski space-time, the un-

derlying mathematical structure for Special Relativity [2], in 

which the elementary separation,   ds2 , between two events is 

defined by 
  (ds / dτ)

2 = −c2 .  Note that here, (2.3) is derived us-

ing only the time dilation formula, which, in turn, is derived 

without reference to the Special Lorentz transformation.  This is 

a significant result: the time dilation formula (2.2) is essentially 

equivalent to the metric for Minkowski space-time, so if (2.2) 

holds, then, just as in Special Relativity, the underlying mathe-

matical structure is Minkowski space-time.   

The purpose of this paper is to investigate the time dilation 

in the natural orbits of POAMS.  For simplicity, we only con-

sider the case of an isolated system consisting of a particle P of 

mass m orbiting a body of mass M, situated at the origin O of 

some frame of reference.  POAMS postulates that angular mo-

mentum is always conserved, so that in this isolated system, the 

orbital angular momentum of P relative to O is constant.  It fol-

lows that the orbit of P lies in a plane and that the acceleration 

of P acts in the opposite direction to the position vector of P 

relative to O.  It then follows that the equation of motion of P 

relative to O takes the form 

 
  d

2r / dt2 − r(dθ / dt)2 = −h(r)  (2.4) 

for some function 
  h(r)  [12].  Here, plane polar coordinates  r  

and θ  are used, where 
  r(t)  is the radial distance of P from O at 

any time  t  and 
  θ(t)  is the angle which the position vector of P 

makes with some fixed radial line from O at any time  t .  For 

initial simplicity, it is assumed that the orbit of P about O is 

closed.  Then Bertrand’s theorem [15] shows that 

 
  h(r) = GM / r2  

for some constant G in (2.4), exactly as in the Newtonian ap-

proach [12].  In general, the magnitude,  L , of the orbital angu-

lar momentum of P, which is a constant, is given by  

 
  L = mr2

(dθ / dt)  (2.5) 

It follows that for any closed orbit, (2.4) can be written as  

   dr2
/ dt2 − L / m2r3 = −GM / r2  (2.6) 

Equation (2.6) can be integrated in the standard way to show 

that the orbits that are closed must be ellipses. [16]  This is, of 

course, what is predicted by Newtonian theory and almost 

agrees with the observational evidence regarding the motions of 

the planets.    

Consider the special case of a circular orbit, so that  r  is con-
stant.  In this case, the orbital speed, 

  v(t) , of P relative to O is 

given by   

 
  v = r(dθ / dt)  (2.7) 

and then (2.4) with 
  h(r) = GM / r  simplifies to  

   v
2 = GM / r  (2.8) 

Eq. (2.8) gives the equation of motion of a freely moving particle 

P in a circular orbit about a central mass  M , i.e. the equation of 

any circular geodesic.  In POAMS, the orbit of P is circular not 

because of some unseen ‘gravitational force’ acting on P due to 

the presence of the mass  M , but rather, simply because of the 

fact that the orbital angular momentum of P is constant.  Notice 

that the speed of P is constant along a circular geodesic, since 

 G ,  M  and  r  are constants, and that for any particular value of 

 r , there is only one circular geodesic orbit.    

It follows by (2.8) and (2.2) that since the speed of P is con-

stant, the time dilation determined by the effect of relative speed 

alone is  

   τ = 1 − GM / r2c2  t  (2.9) 

In (2.9), τ  is the proper time as recorded by P’s clock and  t  is 

the same passage of time as recorded by an ‘external’ observer, 
far away from the orbit of P.  The time  t  is referred to as deep 

space time (DST) in POAMS. [17]  It follows by (2.9) that the 

closer P is to the mass  M , the greater the time dilation effect.  In 

other words, clocks on circular geodesics further away from the 

mass M run faster than clocks nearer to M, relative to DST.  

Clearly, r cannot approach 0 in (2.9); it is necessary that 

  r > GM / c2 .  The constant   GM / c2  is much smaller that the 

radius of any stable star or planet, so that there is no problem in 

applying (2.9) in general.  This equation is, of course, exactly the 

result obtained by Special Relativity when applied to Newtonian 

circular orbits.   

Consider now the general case of a particle P orbiting a body 

of mass  M , situated at the origin O of a plane polar coordinate 

system.  As in Newtonian theory, the first integral of P’s equa-

tion of motion, (2.6), is 
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  (dr / dt)2 + L2

/ m2r2 = 2GM / r + K  (2.10) 

where  K  is a constant of integration, and the orbital speed of P 

is given by 

 
  v

2 = (dr / dt)2 + r2
(dθ / dt)2  (2.11) 

Then substituting (2.11) and (2.5) into (2.2) and using (2.10) 

gives 

 
  
τ = 1 − 2GM / r2c2 − K / c2∫  dt  (2.12) 

Equation (2.12) gives the proper time as recorded by a clock 

traveling with a freely moving particle P in its closed orbit about 

the mass  M , relative to DST, only taking into account effects 

due to the relative speed of P.  Since the orbit of P is assumed to 

be closed,  K  is necessarily negative in (2.12).  It follows that the 

maximum possible time dilation effect predicted by (2.12) oc-
curs as   K → 0 .  This extreme case represents ‘up and down 

movement’ along a straight line and here the prediction of (2.12) 

is supported by evidence provided by the Pound-Rebka experi-

ments. [17] 

3.   True Orbital Time Dilation 

The preceding section essentially addresses time dilation ef-

fects in orbital motion due to velocity effects alone and the re-

sults, at least mathematically, are the same as those predicted by 

applying Special Relativity to Newtonian orbits. However, 

equations (2.9) and (2.12) cannot provide the complete answer.  

For although at first sight these equations seem take account of 

the fact that P is in a particular orbit around the mass  M  due to 

considerations of conservation of angular momentum, the re-

sults only directly depend on the speed of P in its orbit and 

would apply equally well if P were traveling in a straight line 

with the same speed v.  Hence, these equations do not take into 

account the fact that the geodesics in POAMS are not straight 

lines.  This can been seen mathematically, since (2.9) and (2.12) 

are equivalent to (2.2) and it was shown in the last section that 

(2.2) in turn is equivalent to (2.3), the metric for Minkowski 

space-time.  The geodesics in Minkowski space-time are straight 

lines.  If (2.9) and (2.12) are applied to the closed orbits in 

POAMS, the implication is that those orbits are constrained in 

some way and are not the geodesics of the underlying mathe-

matical structure.  Hence, POAMS predicts that true orbital time 

dilation is due not only to velocity effects but also to effects de-

termined by the nature of the paths of freely moving particles.   

Consider once again an isolated system consisting of a parti-

cle P orbiting a mass  M  situated at the origin of a plane polar 

coordinate system.  The key to understanding the true time dila-

tion effect in the orbit of P comes from consideration of the sim-

ple case of a circular orbit.  Recall that in POAMS, if P is freely 

moving in its circular orbit about  M , then the proper time, τ, as 
recorded by a clock traveling with P, relative to DST  t , taking 

only velocity effects into account, is given by (2.9), i.e. 

   τ = 1 − v2 / c2  t = 1 − GM / r2c2  t ≈ 1 − GM / 2rc2  

where  v  is the constant speed of P,  r  is the radius of the orbit 

and  G  is a constant.  We shall suppose that the mass  M  is 

spherically symmetric and static.  Then any additional time dila-

tion effect can depend only on  M  and the distance,  r , of P 

from  M .  It is reasonable to suppose that any such additional 
effect is proportional to   M / r , since, by (2.9), the closer P is to 

 M , the greater the time dilation.  Hence we postulate that the 

true proper time as recorded by P’s clock relative to DST is 

given by 

   τ = 1 − GM / r2c2 − aGM / rc2  t  (3.1) 

where  a  is a constant to be determined.  It is convenient to let 

M  = GM / c2 .  Then by (2.8), (3.1) implies  

 
  −c2

(dτ / dt)
2 = −c2 + v2 + a M  c

2
/ r  

Then using (2.7) this equation becomes  

 
  −c2dτ2 = −c2

(1 − a M
  /r)dt2 + r2dθ2  (3.2) 

Equation (3.2) is the metric for a two-dimensional space-time 

that may be treated as a special case of the three-dimensional 

space-time with metric 

 
  −c2dτ2 = −c2

(1 − a M/
  /r)dt2 + B(r)dr2 + r2dθ2  (3.3) 

when  r  is a constant.  Just as (3.2) is equivalent to the time dila-

tion formula for circular geodesics, so (3.3) must be equivalent 

to the time dilation formula for geodesics in general.  It follows 

that the coefficient of   dr2 , i.e. 
  B(r) , must be a function of  r  

alone, since the central mass  M  is spherically symmetric and 

static.  In order for circles satisfying (2.8) to be geodesics in 

space, we require that these circles are geodesics in the Rieman-

nian manifold with metric (3.3).  It follows by standard differen-

tial geometry (using the Euler-Lagrange equations of variational 

calculus [18]) that all geodesics in this structure must satisfy  

            
  
dt / dτ = α / c2

(1 − a M r ) ,   
  dθ / dτ = β / r2  (3.4a,b) 

 

  

2
d2r

dτ2
+ [ac2

M

  

/B(r)r2]
dt

dτ










2

+ ′B (r)

B(r)

dr

dτ










2

=  

(3.4c) 

 

  

2r

B(r)

dr

dτ










2

= 2r

B(r)

dθ
dτ











2

 

where α  and β  are constants and a dash denotes differentia-

tion with respect to  r .  In the special case when  r  is a constant, 

(3.4c) reduces to   

 
  (ac2

M
  /2r3

)(dt / dτ)
2 = (dθ / dτ)

2  
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and so is independent of B.  It then follows that for any circular 

orbit, since r is constant and (2.7) holds,   

   ac2
M

  /2r3 = (dθ / dτ)
2
(dτ / dt)2 ⇒  

 
  (dθ / dt)2 = v2

/ r2 = ac M  /2r3 ⇒  (3.5) 

   v
2 = ac2

M  /2r = aG M  /2r  

Hence, in order for circular orbits given by (2.8) to be geodesics, 

  a = 2 .  Then by (3.1), the true proper time recorded by P’s clock 

in its circular orbit relative to DST, taking into account not only 

effects due to relative speed but also the fact that P follows a 

geodesic, is given by 

   τ = 1 − 3GM / r2c2  t  (3.6) 

Note that it then follows that (3.4a) and (3.4b) are automatically 

satisfied.  Equation (3.6) is the formula predicted by General 

Relativity for time dilation on a circular geodesic, except that  r  

does not measure exactly the radial distance from the origin in 

that case.  In General Relativity (3.6) is derived using a special 

case of the geodesic equations for the ‘equatorial plane’ of 

Schwarzschild space-time. [19]  However, it should be appreci-

ated here that in POAMS, (3.6) is derived only by adapting the 

time dilation formula of section one to circular geodesics in 

three-dimensional space and using classical differential geome-

try.  This derivation does not depend on the existence of the 

Einstein field equations  

In General Relativity it is often stated that by comparing (3.6) 

and (2.9), it follows that even if P is stationary, the proper time 

as recorded on P’s clock is 

   τ = 1 − 2GM / r2c2  t  

so that this is the time dilation effect due to the ‘gravitational 

effect’ of the presence of the mass  M  alone.  This makes no 

sense in POAMS, since the speed of P is zero if and only if 

 r → ∞  and then  τ = t .  Rather, in POAMS, the formula (3.6) 

comes as a single package and is due simply to the fact that P is 

following a circular geodesic.  Nevertheless, equations (3.6) and 

(2.9) taken together form the basis of calculations which clearly 

demonstrate that clocks in the Global Positioning Satellites in 

orbit around Earth run faster relative to Earth clocks by an 

amount that agrees with observations. [20] 

4.  The Schwarzschild Metric as a Consequence 
of Time Dilation 

It was shown in Section 2 that the time dilation formula (2.2) 

is equivalent to the metric for Minkowski space-time, the under-

lying mathematical structure for Special Relativity.  This Section 

demonstrates that, in the same way, it is possible to construct 

the Schwarzschild metric in General Relativity, which describes 

the space-time surrounding a spherically symmetric and static 

body, from consideration of the proper time recorded by clocks 

travelling along the geodesics in POAMS.   

It was demonstrated in the last Section that (3.6), i.e. (3.1) 
with   a = 2 , which gives the proper time τ  as recorded by a 

clock traveling with a particle P orbiting a central mass  M  on a 

circular geodesic, is equivalent to (3.2) with   a = 2 , i.e. 

 
  −c2dτ2 = −c2

(1 − 2 M
  /r)dt2 + r2dθ2  

where M  = GM / c2 ,  t  is DST,  r  is the radius of P’s orbit and θ  

is the angular coordinate as before. This metric, in turn, is a spe-

cial case of the metric  

 
  −c2dτ2 = −c2

(1 − 2M
  /r)dt2 + B(r)dr2 + r2dθ2  (4.1) 

for a three-dimensional space-time, where  r  is no longer con-
stant.  The coefficient 

  B(r)  depends only on  r  if the central 

mass  M  is spherically symmetric and static.  The function 
  B(r)  

is now determined by the fact that the geodesics in this Rieman-

nian manifold must give rise to geodesics in space that are ellip-

ses, or at least almost ellipses, as dictated by Newtonian theory, 

POAMS and observation.  The geodesics for the manifold with 
metric (4.1) are given by equations (3.4) with   a = 2 .  It also fol-

lows from the metric (4.1) that along any geodesic, 

 
  c

2
(1 − 2 M

  

/r)
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Then from Eqs. (3.4a) and (3.4b) it follows that 

  

α2r4

β2c2
− B(r)(1 − 2M

  

/r)
dr

dθ










2

− r2(1 − 2M

  

/r) =
c2r4

β2
(1 − 2M

  /r)  

Letting   r − 1 / u  so that   dr / dθ = −u−2du / dθ =, then gives 
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β2
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where 
  K

* = (α2
/ c2 − c2

) / β2 .  Eq. (4.3) is the equation of any 

geodesic in POAMS for which  r  and θ  is not constant and so 

describes any non-circular geodesic.  The term 2M  u
3  in (4.2) is 

almost negligible for planetary orbits or satellites orbiting plan-

ets.  For example, in the case of a satellite orbiting the Earth at a 

distance   r = 3 × 107 meters, 2M  u
3 ≈ 3 × 10-25.  Hence, letting 

  K
* = Km2

/ L2  and 
  β

2 = L2
/ m2 , (4.2) is very nearly  

     
  B(u)(1 − 2 M

  

u)
du

dθ










2

+ u2 = 2GMm2

L2
u + Km2 / L2  (4.3) 

Recall that in POAMS, the geodesics, if closed orbits, must be 

ellipses determined by (2.10).  As in Newtonian theory, letting 

  u = 1 / r  in (2.10) gives 
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du

dθ




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


2

+ u2 = 2GMm2

L2
u + Km2 / L2  (4.4) 

Equation (4.3) reduces to (4.4) if and only if 
  B(u) =  

 (1 − 2 M
  u)

−1  

and hence the metric (4.1) must read 

  −c2dτ2 = −c2
(1 − 2 M

  /r)dt2 + (1 − 2M  /r)
−1dr2 + r2dθ2  (4.5) 

This is the metric for the ‘equatorial plane’ of Schwarzschild 

space-time as derived in General Relativity. [21]  However, 

again in contrast to General Relativity, (4.5) is derived here ul-

timately as a natural consequence of conservation of angular 

momentum together with considerations of time dilation, rather 

than as a solution of the Einstein field equations.  Also, it must 

be remembered that in POAMS, it makes no sense to talk about 

‘null geodesics’ as ‘paths of light signals’.  The metric (4.5) refers 

only to the paths of material particles; there is no corresponding 

metric for ‘paths of light signals’.  Notice also that since (4.5) is 

derived from the time dilation formula for circular motion, i.e. 
(3.7), it follows that   r > 3 M in (4.5).  Hence, in contrast to Gen-

eral Relativity, in POAMS it is not possible to extrapolate and 

apply (4.5) to ‘gravitational collapse’ to obtain pathological 

‘space-time singularities’.   

With 
  B(u) = (1 − 2 M

  u)
−1 , the associated equation for general 

freely moving particle motion (4.2) becomes  

 

  

du

dθ










2

+ u2 = K* + 2 M
  c

2u / β2 + 2 M  u
3  (4.6) 

which, of course, is the same as in General Relativity.  It is this 

equation that provides a simplified model of planetary and sat-

ellite orbits, with the term in 2M  u
3  predicting a perihelion shift 

in planetary motion, which agrees with all observational evi-

dence. [22]  

It must be remembered that POAMS does not begin by pos-

tulating that all geodesic orbits are elliptical.  Rather, POAMS 

postulates that all motion is orbital and that angular momentum 

is conserved.  For initial simplicity, if it is assumed that in any 

isolated two-body system orbits are closed, then Bertrand’s 

theorem gives (2.6) as the equation of motion and, as a conse-

quence, geodesic orbits are ellipses.  However, once time dila-

tion effects are taken into consideration, POAMS predicts, just 

as in General Relativity, that the geodesic orbits are given by 

(4.6).  In this case, the corresponding geodesic orbits are ap-

proximately ellipses with a small perihelion shift, and so are no 

longer closed.  Letting   u = 1 / r ,   K
* = Km2

/ L2  and 

  β
2 = L2

/ m2  in (4.6) and using (2.5) gives 

 
  d

2r / dt2 − r(dθ / dt)2 = −GML2
/ c2m2r4  

This is an equation of the form (2.4), which agrees with the fun-

damental postulates of POAMS, and in particular, angular mo-

mentum is conserved, but where now  

 
  h(r) = GM / r2 + 3GML2

/ c2m2r4  

and not 
  h(r) = GM / r2  as dictated by Bertrand’s theorem for 

closed orbits.  The second term in 
  h(r)  here represents the cor-

rection term that takes time dilation into consideration.   

5.  Conclusions 

All the keys, it is said, hang not at one man’s girdle.  Science 

has always been a search for conceptual keys to fit nature, with 

the ideal end-aim, as some scientists have projected it, of finding 

or producing just one master key that will fit all the locks.  So 

much larger than man, however, is nature that the aim of pro-

ducing just one ‘Key to the Universe’ – or ‘Theory of Every-

thing’, as it has been called – is undoubtedly a vain hope of sci-

entific achievement during mankind’s stay on this planet.  Nev-

ertheless, there have been keys that have been superior to others 

in the sense that they open far more doors into an understand-

ing of nature than others do.  This historic door-opening process 

has produced theories such as those of Galileo, Newton, Fara-

day, Maxwell, Lorentz, Einstein … et al.; and the fact that these 

illustrious people have so spectacularly done what they did 

cannot mean that there is no more to do.   

So the search for new keys must continue; and if that search 

is not to stultify into oblivion, then it is plain that no locksmith, 

however successful his efforts in opening-up some particular 

sector of understanding, should be allowed to monopolize the 

overall operation by restricting the use of any key but his own 

particular one.  Others must be allowed to continue the venture 

in their own particular ways, and there is more than enough 

room in Nature for many very different lateral-thinking efforts. 

In the same way, then, that Einstein’s and Bohr’s theoretical 

keys fitted the separate locks of Relativity and Quantum theory 

but were not able to be used on each other, POAMS seeks to 

advance the cause of science by providing a key designed to fit 

both [12].  In this paper, this POAMS key has been found to fit 

the locks of phenomena in areas of both Special and General 

Relativity, by pure syllogistic in the anti-metaphysical manner 

described. 

The way POAMS does this is to adopt, as a starting point 

what Duffy identifies as the ‘third alternative’.  This, as already 

stated, is a radical empiricism, the strand of scientific philoso-

phy that has been historically labeled ‘phenomenalism’.  This 

approach eschews theoretical approaches to science that postu-

late causal influences and processes going on in the vacuum.  

Such purely imaginary or metaphysical processes are, for ex-

ample, Newton’s straight-line rectilinear motion, which no-

where can be observed; the underlying and invisible ‘field-

forces’ assumed responsible for the phenomenon of orbital mo-

tion, and Einstein’s completely unnecessary ‘constant speed of 

light relative to a vacuum’.  As soon as we abandon our current 

scholastic obsession with these particular ‘keys’ to our under-

standing of relativity and its connection with orbital motion, we 

are no longer blinded to the fact that at least some of the doors 

to nature need no more such keys because they are, as they have 

always been, already standing observationally wide-open.  This, 

for those who are prepared to credit it, has been demonstrated 

in this paper, namely that far from needing more and more new 

theories to explain physical phenomena, it may well eventually 
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transpire that the phenomena themselves are both logically and 

mathematically self-explanatory. 
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